NOTE ON MATH2060B: ELEMENTARY ANALYSIS IT (2020-21)

CHI-WAI LEUNG

1. DIFFERENTIATION

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a real-
valued function defined on I.

Definition 1.1. Let c € I. We say that f is differentiable at c if the following limit exists:
L@ - @)
T—cC Tr—c
In this case, we write f'(c) for the above limit and we call it the derivative of f at c. We say that if
f is differentiable on I if f'(x) exists for every point x in I.

Proposition 1.2. Let ¢ € I. Then f'(c) exists if and only if there is a function ¢ defined on I such
that the function ¢ is continuous at ¢ and

f(@) = fle) = p(z)(z = ¢)
forallz e I.
In this case, p(c) = f'(c).

Proof. Assume that f’(c) exists. Define a function ¢ : I — R by

J@1@) i st
p@)={ e LIFG
f'(c) if z=c

Clearly, we have f(x) — f(c) = p(z)(x —¢) for all z € I. We want to show that the function ¢ is
continuous at c. In fact, let € > 0, by the definition of the limit of a function, there is é > 0 such that

ERGE(C

whenever z € I with 0 < |x—¢| < 0. Therefore, we have |f'(c)—p(z)| <casz € I with0 < |[x—¢| < 0.
Since ¢(c) = f'(c), we have |f'(¢) — ¢p(z)| < € as © € I with |z — ¢| < 0, hence the function ¢ is
continuous at c as desired.

f(@)—f(c)

The converse is clear since ¢(z) = =—~—-~ if z # c. The proof is complete. D

| <e

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.

Proof. By using Proposition 1.2, if f’(c) exists, then there is a function ¢ defined on I such that the
function ¢ is continuous at ¢ and we have f(z) — f(c¢) = p(x)(x — ¢) for all x € I. This implies that
lim, . f(z) = f(c), so f is continuous at ¢ as desired. O

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function
f(z) == |z| is a continuous function on R but f'(0) does not exist.
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Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differen-
tiable at ¢ € I. We have the following assertions.

(i) (f +9)'(c) exists and (f + g)'(c) = f'(c) + ¢'(c )

(i1) The product (f - g)'(c) exists and (f - g)'(c) = f'(c)g(c) + f(c)d'(c).

)
(iii) If g(c) # 0, then we have (5)/(6) exists and ( ) (c) = W

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (i), note that we have

flx)g(x) — fle)g(c flx)— f(e z) — g(c
(z)g(z) — fle)g(e) _ f(x) ()g(l,)Jrf(c)g() 9(c)
r—c x—c r—c
for all x € I with x # ¢. From this, together with Proposition 1.3, Part (i7) follows.
For Part (iii), by using Part (i), it suffices to show that (%)’(c) = g(g:%. In fact, ¢'(c) exists, so g is

continuous at c. Since g(c) # 0, there is §; > 0 so that g(x) # 0 for all x € I with |x — ¢| < d;. Then
we have
1 11 ) = 1 (g(c)—g(x))
z—cglx) gl z—c gx)g(c)
for all x € I with 0 < |z — ¢| < §;. By taking z — ¢, we see that (é) (c) exists and (%)'(c) = =99
The proof is complete. ]

Proposition 1.6. (Chain Rule): Let f,g be functions defined on R. Let d = f(c) for some ¢ € R.
Suppose that f'(c) and ¢g'(d) exist. Then the derivative of composition (go f)'(c) exists and (go f) (c) =
g'(d)f'(c).

Proof. By using Proposition 1.2, we want to find a function ¢ : R — R such that

go f(x) —go flc)=p(x)(z—c)
for all z € R and the function ¢(z) is continuous at ¢, and so (g o f)(c) = p(c).
Let y = f(z). By using Proposition 1.2 again, there is a function and SB(y) so that g(y) — g(d) =
B(y)(y — d) for all y € R and [B(y) is continuous at d. Similarly, there is a function a(x) we have
f(z) — f(c) = a(x)(z —c) for all x € R and «a(z) is continuous at c. These two equations imply that

gof(x)—go f(c) = B(f()(f(x) = f(¢) = B(f(x))a(x)(z — ¢)
for all x € R. Let p(z) := B(f(x)) - a(x) for z € R. Since 5(d) = ¢'(d) and a(c) = f'(c), we see that
o(c) = B(f(e)alc) = ¢'(d)f'(c). It remains to show that the function ¢ is continuous at ¢. In fact,
f'(c) exists, so f is continuous at ¢, and hence the composition o f(z) is continuous at ¢. In addition,

the function « is continuous at c¢. Therefore, the function ¢ := (8o f) - « is continuous at ¢, and so
(g o f)(c) exists with (go f) (¢) = p(c) = ¢'(d) f'(¢). The proof is complete. O

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto
J. Letd = f(c) forc € I. Assume that f'(c) exists and the inverse of f, write g := f~', is continuous
at d. If f'(c) # 0, then ¢'(d) exists and ¢'(d) = f%(c)

Proof. Let y = f(x). Note that by using Proposition 1.2, there is a function F' on I such that
f(z) — f(¢) = F(z)(x —¢) for all z € I and F is continuous at ¢ with F(c) = f'(¢) # 0. F is
continuous at ¢, so there are open intervals I and J; such that ¢ € Iy C I and d € f(I) = Ji,
moreover, F(z) # 0 for all z € I;. Note that since f(z) — f(c) = F(z)(x — ¢), we have y — d =
flg(y)) — flg(e)) = F(g(y))(9(y) — g(d)) for all y € J;. Since F(x) # 0 for all x € I;, we have
g(y) — g(d) = F(g(y))~L(y — d) for all y € J;. Note that the function F(g(y))~! is continuous at d.
Thus, ¢'(d) exists and ¢'(d) = F(g(d))~! = f%(c) as desired. O
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Definition 1.8. Let D be a non-empty subset of R and let g be a real-valued function defined on D.

(i) We say that g has an absolute mazimum (resp. absolute minimum) at a point ¢ € D if
g(c) = g(z) (resp. g(c) < g(z)) for allx € D.
In this case, c is called an absolute extreme point of g.

(ii) We say that g has a local mazimum (resp. local minimum) at a point ¢ € D if there is r > 0
such that (¢ —r,c+1r) C D and g(c) > g(x) (resp. g(c) < g(x)) for allx € (c—r,c+ 7).
In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point,
for example if g(z) := x for x € [0,1], then g has an absolute maximum point at x = 1 of g but 1 is
not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local
extreme point at ¢ € I and f'(c) exists. Then f'(c) = 0.

Proof. Without lost the generality, we may assume that f has local minimum at ¢. Then there is > 0
such that f(z) > f(c) for x € (c—r,c+r) C I. Since f’(c) exists, by using Proposition 1.2, there is a
function ¢ defined on I such that f(x)— f(c) = ¢(x)(x —c) for all x € I and ¢ is continuous at ¢ with
o(c) = f'(¢). Thus, we have p(z)(x —¢) > 0 for all z € (¢ — r,c+r). From this we see that p(z) >0
as ¢ € (¢, ¢+ r), similarly, p(x) < 0 as x € (¢ — r,c). The function ¢ is continuous at ¢, so p(c) =0
and hence f'(c) = ¢(c) = 0 as desired. O

Proposition 1.11. Rolle’s Theorem: Let f : [a,b] — R be a continuous function. Assume that
f(x) exists for all x € (a,b) and f(a) = f(b). Then there is a point ¢ € (a,b) such that f'(c) = 0.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that
is, there are ¢; and ¢z such that f(c1) = mingeqy f(z) and f(c2) = max,epqy) f(x), hence, f(c1) <
f(z) < f(eg) for all z € [a,b]. If f(e1) = f(ca), then f(z) = f(e1) = f(eo) for all z € [a,b], so f/(z) =0
for all z € (a,b).

Otherwise, suppose that f(ci1) < f(c2). Since f(a) = f(b), we have ¢; € (a,b) or ¢z € (a,b). We may
assume that ¢; € (a,b). Then x = ¢; is a local minimum point of f. Therefore, f'(c1) = 0 by using
Proposition 1.10. O

Theorem 1.12. Main Value Theorem: If f : [a,b] — R is a continuous function and is differen-
tiable on (a,b), then there is a point ¢ € (a,b) such that f(b) — f(a) = f'(c)(b— a).

Proof. Define a function ¢ : [a,b] — R by

M@Zﬂ@—ﬂ@—ﬂ2:§@

for € [a,b]. Note that the function ¢ is continuous on [a,b] with ¢(a) = ¢(b) = 0, in addition, ¢'(x)
exists for all z € (a,b). The Rolle’s Theorem implies that there is a point ¢ € (a,b) such that

0=gl(e) = o) - 1O,

The proof is complete. ]

(z —a)

Corollary 1.13. Assume that f : [a,b] — R is a continuous function and is differentiable on (a,b).
If ' =0 on (a,b), then f is a constant function.
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Proof. Fix any point z € (a,b). Let z € (z,b]. By using the Mean Value Theorem, there is a point
¢ € (z,z) such that f(z) — f(2) = f'(¢)(z — 2). If f/ =0 on (a,b), so f(x) = f(z) for all z € [2,D].
Similarly, we have f(z) = f(z) for all = € [a, z]. The proof is complete. O

Definition 1.14. We call a function f is a C*-function on I if f'(z) exists and continuous on I. In
addition, we define the n-derivatives of f by f(z) := fO=V(x) for n > 2, provided it exists. In
this case, we say that f is a C™-function on I. In particular, we call f a C*-function (or smooth
function) if f is a C™-function for all n = 1,2....

For example, the exponential function exp x is a very important example of smooth function on R.

Corollary 1.15. Inverse Mapping Theorem: Let f be a C'-function on an open interval I and
let c € I. Assume that f'(c) # 0. Then there is r > 0 such that the function f is a strictly monotone
function on (¢ —r,c+1) C I. If we let J := f(c—r,c+7)), then the inverse function g := f~1:J —
(c—r,c+r) is also a Ct-function.

Proof. We may assume that f’(¢) > 0. f’(z) is continuous on I, so there is r > 0 such that f'(z) >0
forallz € (c—7r,c+7r) C I. For any z; and x5 in (¢ —r,,c+r) with 1 < x9, by using the Mean Value
Theorem, we have f(x2) — f(z1) = f'(v)(x2 — x1) for some v € (x1,x2), and hence f(z3) > f(x1).
Therefore the restriction of f on (¢ —r,c+ ) is a strictly increasing function, thus, it is an injection.
Let J:= f((¢c—r,c+r)). Then J is an interval by the Immediate Value Theorem. Moreover, J is an
open interval because f is strictly increasing. Also, if we let ¢ = f~! on J, then ¢ is continuous on
J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore,
by Proposition 1.7, we see that ¢'(y) exists on J and ¢'(y) = % fory= f(z) and x € (¢ —r,c+ 7).
Therefore, g is a C' function on .J. The proof is complete. U

Proposition 1.16. Cauchy Mean Value Theorem: Let f,g : [a,b] — R be continuous functions
with g(a) # g(b). Assume that f, g are differentiable functions on (a,b) and ¢'(x) # 0 for all x € (a,b).

- . fB)=f(a) _ f(c)
Then there is a point ¢ € (a,b) such that T0)—s(@) = 719"

Proof. Define a function ¢ on [a,b] by ¥ (x) = f(x) — f(a) — 83 g((a)) (9(x) — g(a)) for x € [a,b]. Then
by using the similar argument as in the Mean Value Theorem, the result follows. g

Theorem 1.17. Lagrange Remainder Theorem: Let f be a C™" Y function defined on (a,b). Let
xo € (a,b). Then for each x € (a,b), there is a point ¢ between xy and x such that

n (k) €T (n+1) Cc
_ Z f k(' 0) (l‘—flf(])k + fén_'_ 1()') (ZB —l’o)n+1.

Proof. We may assume that 2y < z < b. Case: We first assume that f* (mo) =0forallk=0,1,....,n
Put g(t) = (t — zo)"*! for t € [z9,z]. Then ¢'(t) = (n + 1)(t — x9)"™ and g(z¢) = 0. Then by the

Cauchy Mean Value Theorem, there is 21 € (20,z) such that L g; J; Ei; ((m 0 - & (ml)). Usmg the

) g
same step for f’ and ¢’ on [xg, z1], there is x2 € (29, 1) such that L ((;03 L@ 1; )) D(wa)

(o
"(zo

g'(x1)— ()(562)
repeat the same step, there are xy, x9, ...,z 41 in (a,b) such that zj € (a:o,mk 1) for k=1,2,...n+1
and
f@) @) D @)
g(x) — g'(x1) g (241)
In addition, note that ¢g"*!(z,.1) = (n + 1)!. Therefore, we have % = %, and hence

flz) = %(x — x0)" 1. Note z,,41 € (20, 7) and thus, the result holds for this case.



For the general case, put G(z) = f(z) — > 1, A ;{, (x — x0)* for € (a,b). Note that we have

G(zo) = G'(29) = - - - = G™(zy) = 0. Then by the Claim above, there is a point ¢ € (2o, ) such that

(n+1) (¢ . (k ) l? (n+1) (¢ .
Glx) = L. Since GHD(c) = fOHD(0), (o) = Yo L8 (o — wo)* + L2 The proof is
complete. O

Example 1.18. Recall that the exponential function e® is defined by

z . £
€ T2 nll—{goz k!

for x € R. Note that the above limit always exists for all z € R (shown in the last chapter).

Show that the natural base e is an irrational number.

Put f(z) := e® for x € R. It is a known fact f is a C™ function and f(")(z) = ¢® for all z € R. Fix
any > 0. Then by the Lagrange Theorem, for each positive integer n, there is ¢, € (0, ) such that

n k
& xn—i—l
E —‘ .
kOk n+1

In particular, taking x = 1, we have

0< " zn: L3
= e — _—
(n+1)! = k! (n+1)!

for all positive integer n. Now if e = p/q for some positive integers p and ¢, and thus, we have

n

D 1 < 3
q¢ = El " (n+1)!

for all n = 1,2... Now we can choose n large enough such that (n') € N. It leads to a contradiction
because we have

1 3(n!) _ 3

Therefore, e is irrational.

Proposition 1.19. Let f be a C? function on an open interval I and xo € I. Assume that f'(xq) = 0.
Then f has local mazimum (resp. local minimum,) at xo if f®(xg) <0 (resp. f@(zg) > 0).

Proof. We assume that f®) (xg) > 0. We want to show that z( is a local minimum point of f. The
proof of another case is similar. Note that for any = € I\ {z¢}. Then by the Lagrange Theorem, there
is a point ¢ between xy and x such that

£(&) = Fwo) + F'(o) = 0) + 3 fD @) (& — 20)* = flmo) + 5P (o) — w0)*

f® is continuous at z¢ and f®)(x) > 0, and so there is r > 0 such that f®(z) > 0 for all
x € (xg — 1,20 + 1) C I. Therefore, we have

£() = fwo) + 5P (@) @ — 20)? 2 (o)

for all x € (zg — r,zp + r) and thus, z is a local minimum point of f as desired. O
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Proposition 1.20. L’Hospital’s Rule: Let f and g be the differentiable functions on (a,b) and let
c € (a,b) Assume that f(c) = g(c) =0, in addition, ¢'(x) # 0 and g(x) # 0 for all x € (a,b) \ {c}. If
!/
the limit L := lim = exists, then so does lim —w, moreover, we have L = lim &
a—c g'(x) a—c g(x) z—c g(x)

Proof. Fix ¢ < # < b. Then by the Cauchy Mean Value Theorem, there is a point x; € (¢, x) such

that )

@) _ f@) = fe) _ f')

g(x)  g(@)—glc)  g'(z1)

/
x1 € (¢,x), so if L := lim f/(x) exists, then lim /(@) exists and is equal to L.
T—c g (x) r—rc+ g(x)
Similarly, we also have lim M = L. The proof is finished. O
z—c— g(x)

Proposition 1.21. Let f be a function on (a,b) and let ¢ € (a,b).
(i) If f'(c) exists, then the following limit exists (also called the symmetric derivatives of f at c):

Fe)— i T = Sle =)

t—0 2t

(i) If f@(c) ewists, then
FO (o) = pim LTV =2+ fle=b)

t—0 t2

Proof. For showing (i), note that we have

) i FEED I Fet ) = f)
t—0+ t t—0— t
Putting ¢t = —s into the second equality above, we see that
oy o fle—s)— fle)
f (C) N 51—1>%1+ —S .

To sum up the two equations above, we have

fle+t)—fe—t)

/ T
fle) = t1—1>I(])a+ 2t
t) — —1
Similarly, we have f/(c) = tli%l flet )2t fle ) Part (7) follows.
rey il

For showing Part (ii), let h(t) := f(c+1t) —2f(c) + f(c —t) for t € R. Then h(0) = 0 and A/(t) =
f'(c+t)— f'(c —t). By using the L’'Hospital’s Rule and Part (i), we have

_ _ / / _f! _
g LED 2@ b fle=t) o HO Pt et )
0 t2 t=0 (t2))  t=0 2t
The proof is complete. O

Definition 1.22. A function f defined on (a,b) is said to be convex if for any pair a < x1 < x3 < b,
we have

f(A =)z +txg) < (1 —1)f(z1) +1f(22)
for all t € [0,1].

Proposition 1.23. Let f be a C? function on (a,b). Then f is a convex function if and only if
f@(z) >0 for all x € (a,b).
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Proof. For showing (=): assume that f is a convex function. Fix a point ¢ € (a,b). f is convex, so
we have f(c) = f(3(c+t)+3(c—1t) < if(c+t)+3f(c—1t) forall t € R with ¢+t € (a,b) . By
Proposition 1.21, we have

FP(e) = lim flet+t) =2f(c) + flc—1)

t—0 t2

Therefore, we have f(2)(¢) > 0.

For (<), assume that f®)(z) > 0 for all z € (a,b). Fix a < 21 < x2 < band t € [0,1]. Let
¢ := (1 —t)x1 + txa. Then by the Lagrange Reminder Theorem, there are points z; € (x1,¢) and
z9 € (¢, x2) such that

Fl@2) = F(0) + (s — ) + 3 f D (z2) (w2 — )
and
Fle) = £+ F@)r = ¢)+ 3O - o),

These two equations implies that

(1= 1)F () + 1£(22) = £€) + (1 =13 F ) — ) + 15O ()2 — 0 > £(6).
since f®)(21) and f)(23) both are non-negative. Thus, f is convex. O

Corollary 1.24. Let p > 0. The function f(x) := aP is convex on (0,00) if and only if p > 1.

Proof. Note that f®)(z) = p(p — 1)zP=2 for all z > 0. Then the result follows immediately from
Proposition 1.23. O

Proposition 1.25. Netwon’s Method: Let f be a continuous real-valued function defined on [a,b]
with f(a) <0 < f(b) and f(z) =0 for some z € (a,b). Assume that f is a C* function on (a,b) and
f'(x) #0 for all x € (a,b). Then there is § > 0 with J := [z — 0, 2+ ] C [a,b] which have the following
property:

if we fix any x1 € J and let

f'(zn)

(1.1) Tptl 1= Ty —

forn=1,2,..., then we have z = lim z,,.

Proof. We first choose r > 0 such that [z — 7,z + 7] C (a,b). We fix any point z1 € (z —r, z + r) with
x1 # z. Then by the Lagrange Remainder Theorem, there is a point £ between z and ;1 such that

0=f(2) = flar) + f'(a1)(z — ;1) + %f@)(f)(z )2

This, together with Eq 1.1 above, we have

_ fl@) @ 2
B _f'(xl) —romT 2f’($1)(z o)
Therefore, we have
(2)
(1.2) Ty — 2z = &(z—xl)?
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Note that the functions f'(z) and f®)(x) are continuous on [z — r, z 4+ r] and f'(x) # 0, hence, there
is M > 0 such that ’JZC;)’gzN < M for all u,v € [z — 7,2+ r]. Then the Eq 1.2 implies that

()
2f'(x1)
Choose § > 0 such that Mé < 1 and J := [z — 0,2+ 6] C (2 —r,z + ). Note that Now we take any

r1 € J. Eq 1.3 implies that |xg — 2| < M |z — 21|? < (MJ) - |z1 — 2| < §. By using Eq 1.1 inductively,
we have a sequence (z,,) in J such that

|1 — 2| S M - |z — ap|? < (MO) - |2 — 2|
for all n = 1,2.... Therefore, we have
a1 — 2| < (M) - [zy — 2]

for all n = 1,2..., thus, lim z,, = z. The proof is complete. ]

(1.3) |z — 2| = | (z—x1)?| < M(z — 1)



2. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
[a,b] .

(ii): Let P : a = 29 < 21 < .... < x, = b denote a partition on [a,b]; Put Ax; = x; — z;—1 and
I|IP|| = max Az;.

(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [xi_1, 2}
Set wl(f, P) = Mz(f, P) - ml(f, P)

(iv): (the upper sum of f): U(f, P) = > M;(f, P)Ax;
(the lower sum of f). L(f,P):=>_ m;(f, P)Ax;.

Remark 2.1. [t is clear that for any partition on [a,b], we always have
(i) m(b— a) < L(f, P) < U(f, P) < M(b—a).
(it) L(=f,P) = =U(f, P) and U(—f,P) = —L(f, P).

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f, P) < L(f,Q) < U(f,Q) < U(f,P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f,P) < L(f,Q) if P C . By using the induction on
[ .= #Q — #P, it suffices to show that L(f, P) < L(f,Q)asl=1. Let P:a=ao<z1 < - <xp=0>
and @ = PU{c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(f, P) < min{m,(f,Q), ms1(f,Q)}.
So, we have
ms(f7 P)(xs - xs—l) S ms(fa Q)(C - xs—l) + ms-l—l(fv Q)(xs - C)'
This gives the following inequality as desired.
(21) L(f7 Q) - L(f7 P) = ms(fa Q)(C - xs—l) + ms-l—l(fu Q)(-Ts - C) - ms(fa P)(l‘s - xs—l) > 0.

Now by considering — f in the Inequality 2.1 above, we see that U(f,Q) < U(f, P).
For Part (ii), let P and @ be any pair of partitions on [a,b]. Notice that P U @ is also a partition on
[a,b] with P C PUQ and Q € PUQ. So, Part (i) implies that

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).
The proof is complete. O

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on |a,b]. The upper integral (resp. lower integral) of f
over [a, b], write f;f (resp. f:f), is defined by

b
/ f=mf{U(f, P): P is a partation on [a,b]}.



10 CHI-WAI LEUNG

(resp.
b
/ f=sup{L(f,P) : P is a partation on [a,bl]}.)

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, <) a directed set if for each pair of elements i1
and i9 in I, there is i3 € I such that i1 <3 and 79 < i3.

A net in R is a real-valued function f defined on a directed set I, write f = (x;);cs, where z; := f(7)
forie 1.

We say that a net (z;) converges to a point L € R (call a limit of (x;)) if for any € > 0, there is iy €
such that |z; — L| < ¢ for all i > 4.

Using the similar argument as in the sequence case, a limit of (x;) is unique if it exists and we write
lim; x; for its limits.

Example 2.5. Appendix: Using the notation given as before, let
I:={P: P is a partitation on [a,b] }.
We say that P, < P, for P, P, € I if P C P,. Clearly, I is a directed set with this order. If we put
up = U((f, P), then we have
b
li = :
imup /a f

In fact, let € > 0. Then by the definition of an upper integral, there is Py € I such that

/abeU(f,Po) S/abera

Lemma 2.2 tells us that whenever P € I with P > Fy, we have U(f,P) < U(f, ). Thus we have
lup — fff\ < ¢ whenever P > Py as desired.

Proposition 2.6. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
() o
/ab r< 't

(ii) [2(~f)=—[it.
(1)

/abf+/abgg/ab<f+g>g/ab(fms/:ﬁ/abg.

Proof. Part (i) follows from Lemma 2.2 at once.

Part (i¢) is clearly obtained by L(—f, P) = —=U(f, P).

For proving the inequality fff + f;g < f;(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <
L(f + g, P) for all partitions P on [a,b]. Now let P; and P, be any partition on [a,b]. Then by Lemma
2.2, we have

b
L(f,P1)+ L(g, ) < L(f,PLUP) + L(g,PLUP) < L(f +g,PLUP) < / (f +9).
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So, we have

(2.2) / / /f+g

As before, we consider —f and —g in the Inequality 2.2, we get [ ; (f+g9) < fo f —i—fjbg as desired. O

The following example shows the strict inequality in Proposition 2.6 (i7i) may hold in general.

Example 2.7. Define a function f,g:[0,1] - R by

1 if x€[0,1]NQ;
J(@) = {—1 otherwise.
and
() = -1 if ©e€l0,1]NQ;
9= 1 otherwise.

Then it is easy to see that f + g =0 and

So, we have

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b]
if fbaf = f;f In this case, we write f;f for this common value and it is called the Riemann integral
of f over [a,b).

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 2.9. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Ozf;f + Bffg for all
1,9 € Rla,b] and o, B € R.

Proof. Let f,g € R[a,b] and o, f € R. Notice that if @ > 0, it is clear that Tabaf = aﬁ’f = afabf -
O‘f;f = fabaf- Also, if v < 0, we have fabaf = Oéfabf = Oéf:f = Oéf:f = f;af. Therefore, we have

f:af = af;f for all & € R. For showing f + ¢g € R[a,b] and f;(f—i—g) = fff+f;g, these will
follows from Proposition 2.6 (iii) at once. The proof is finished. O
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The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=xzg <z <--- <z, =band 1 <7 <n, put

wi(f, P) :=sup{|f(z) — f(2')|: x,2" € [z;_1, 7]}
It is easy to see that U(f, P) — L(f, P) = >, wi(f, P)Ax;.

Theorem 2.10. Let f be a bounded function on [a,b]. Then f € Rla,b] if and only if for all € > 0,
there is a partition P:a =x9 < --- <z, = b on [a,b] such that

(2.3) 0<U(f,P sz f,P)Azx; < e.

Proof. Suppose that f € R[a,b]. Let € > 0. Then by the definition of the upper integral and lower

integral of f, we can find the partitions P and @ such that U(f, P) < fabf +¢ and fabf —e < L(f,Q).
By considering the partition P U @), we see that o

/f—s<L<f,Q><L<f,PuQ><U<f,PuQ><Uf, /f+s

Since f;f = faf = faf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2e. So, the partition P UQ is as
desired. o

Conversely, let € > 0, assume that the Inequality 2.3 above holds for some partition P. Notice that
we have

L(J.P) < /b fs/abfswf,P).

So, we have 0 < T;f — f:f < ¢ for all € > 0. The proof is finished. O

Remark 2.11. Theorem 8.3 tells us that a bounded function f is Riemann integrable over [a, b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 2.12. Let f:[0,1] — R be the function defined by

1 if x = f, where p, q are relatively prime positive integers;

fl@)=9P
0 otherwzse.

Then f € R[0,1].

(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the

set (0,1] N Q is countable, we can write (0,1] N Q = {21, 22, ....}. So, if we let m(D) be the “size” of

the set D, then m(D) = m(U;21{zi}) = Y iy m({z}) = 0, in here, you may think that the size of

each set {z;} is 0. )

Proof. Let € > 0. By Theorem 8.3, it aims to find a partition P on [0, 1] such that

U(faP)_L(f)P) <e
Notice that for z € [0, 1] such that f(x) > € if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with % > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive
integers p and ¢ such that f(%) >e. So, if welet S :={x €0,1]: f(x) > e}, then S is a finite subset



13

of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a =129 < -+ < x,, = 1,
we have

Yowilf,P)Az=( Y.+ > ) wlf,P)Ax;
=1 i:[l’ifl,l'i]ﬁSZW i:[l’i,h{ri]ﬁ575®
Notice that if [z;—1,2;] NS = 0, then we have w;(f, P) < ¢ and thus,
Z wi(f, P)Az; <e Z Ax; <e(1-0).
i:[mi_l,mi]ﬂSzw i:[mi_l,:pi}ﬂszw

On the other hand, since there are at most 2L sub-intervals [z;_1, x;] such that [z;_1,2;] NS # () and
wi(f,P) <1foralli=1,..,n, so, we have

S wlhP) Az <1 Y A <2L|P).
i:[:ci,l,a:i]r157£® i:[xi,l,xi}ﬂs;ﬁ@

We can now conclude that for any partition P, we have

> wilf, P)Ax; < e+ 2L||P|.
i=1
So, if we take a partition P with ||P| < e/(2L), then we have > 7" | w;(f, P)Ax; < 2e.
The proof is finished. O

Proposition 2.13. Let f be a function defined on |a,b]. If f is either monotone or continuous on
[a,b], then f € Ra,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P :a =z < --- < x,, = b, we have w;(f, P) = f(zi) — f(xi—1). So, if
|P|| < e, we have

n

D wilf, P)Az =Y (f(wi)—fwi1)Axs < [P D (f(@i)—f (i) = [[PI(f(b)—f(a) < e(f(b)—f(a)).
i=1 i=1 i=1
Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any £ > 0,
there is § > 0 such that |f(z) — f(2)] < € as z,2’ € [a,b] with |z —2'| < . So, if we choose a partition

P with [|P|| < ¢, then w;(f, P) < ¢ for all i. This implies that

iwi(f, P)Ax; < aiAxi =¢e(b—a).

i=1 i=1
The proof is complete. O

Proposition 2.14. We have the following assertions.
(i) If f,9 € Rla,b] with f < g, then [*f < [Vg.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |f:f\ <
J2 111
Proof. For Part (), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,
we have f:f:Ef gfj)g: f;g.

For Part (i7), the integrability of | f| follows immediately from Theorem 8.3 and the simple inequality
I£1() — If1@")] < [f(') = f(@")] for all a/,2" € [a,b]. Thus, we have U(|f],P) — L(f],P) <
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U(f,P)— L(f,P) for any partition P on [a, b].
Finally, since we have —f < |f| < f, by Part (i), we have ]fff| < f; |f| at once. O

Proposition 2.15. Let a < ¢ < b. We have f € R[a,b] if and only if the restrictions f|(,q € Rla, c]
and f|cp € Rlc,b]. In this case we have

(2.4) /abf=/acf+/cbf-

PTOOf. Let f1 = f’[ad and fg = f’[c,b]-
It is clear that we always have

U(f1,P1) — L(f1, P1) + U(f2, P2) — L(f2, 2) = U(P, f) — L(f, P)

for any partition P on [a,c| and P on [¢,b] with P = P, U P;.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since f € Rla,b], for any € > 0, there is a partition @ on [a, b]
such that U(f, Q) — L(f,Q) < € by Theorem 8.3. Notice that there are partitions P, and P» on [a, (]
and [c, b] respectively such that P := QU {c} = P U P5. Thus, we have

U(fr, P1) = L(f1, P1) + U(f2, P2) — L(f2, P2) = U(f, P) = L(f,P) < U(f,Q) — L(f,Q) < &.

So, we have f1 € Rla,c| and fa € R]c, b].
It remains to show the Equation 2.4 above. Notice that for any partition P; on [a,c] and P on [c, b],
we have

b b
L(fl,P1)+L(f2,P2)=L(f,P1UP2)S/ f=/ ;.

So, we have fac I+ Cb < f; f. Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 8.3. g

Proposition 2.16. Let f and g be Riemann integrable functions defined ion [a,b]. Then the pointwise
product function f - g € Rla,b].

Proof. We first show that the square function f? is Riemann integrable. In fact, if we let M =
sup{|f(x)| : = € [a,b]}, then we have wy(f%, P) < 2Mwy(f, P) for any partition P :a = 29 < --- <
an, = b because we always have |f2(z) — f2(2')| < 2M|f(z) — f(a')| for all z,2" € [a,b]. Then by
Theorem 8.3, the square function f2 € R|a, b].

This, together with the identity f-g = 3((f + g)? — f* — ¢*). The result follows. O

Remark 2.17. In the proof of Proposition 2.16, we have shown that if f € Rla,b], then so is its
square function f?. However, the converse does not hold. For exzample, if we consider f(z) = 1 for
r€QnJ0,1] and f(z) = —1 forx € Q°N[0,1], then f ¢ R[0,1] but f2=1 on [0,1].

Proposition 2.18. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on [a,b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point & € (a,b) such that

b b
(2.5) | @iz = 1) [ g(a)da,

Proof. By the continuity of f on [a,b], there exist two points x1 and x9 in [a, b] such that
f(z1) =m :=min f(x); and f(z2) = M := max f(x).
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We may assume that a < x7 < x9 < b. From this, since g < 0, we have

mg(z) < f(x)g(z) < Mg(x)

for all € [a,b]. From this and Proposition 2.16 above, we have

b b b
m/gé/fgﬁM/g
a a a

So, if f; g = 0, then the result follows at once.
We may now suppose that | f g > 0. The above inequality shows that

1P fg
Lo~

m = f(z1) < < f(z2) = M.

Therefore, there is a point £ € [z1, 2] C [a, b] so that the Equation 2.5 holds by using the Intermediate
Value Theorem for the function f. Thus, it remains to show that such element £ can be chosen in
a,b).

£et zz < x1 < 29 < b be as above.

If 1 and z9 can be found so that a < 1 < z9 < b, then the result is proved immediately since
€ € [x1,m2] C (a,b) in this case.

Now suppose that z; or z2 does not exist in (a,b), i.e., m = f(a) < f(z) for all z € (a,b] or
f(z) < f(b) = M for all = € [a,b).

Claim 1: If f(a) < f(z) for all x € (a,b], then f fg> fla f g and hence, & € (a,z2] C (a,b].

For showing Claim1, put h(x) := f(x) — f( ) for « € [a,b]. Then h is continuous on [a,b] and h > 0
on (a,b]. This implies that f h >0 for any subinterval [c,d] C [a,b]. (Why?)

On the other hand, since f g = f g > 0, there is a partition P : a = 29 < -+ < 7, = b so that
L(g, P) > 0. This implies that my(g, P) > 0 for some sub-interval [zj_1, zx|. Therefore, we have

Tk Tk
/th/ hgzmk(g,P)/ h > 0.
a Th— Tk—1

Hence, we have f fg> f(a f g. Claim 1 follows.

Similarly, one can show that if f(z) < f(b) = M for all = € [a,b), then we have f fg < f(b f g.
This, together with Claim 1 give us that such £ can be found in (a,b). The proof is ﬁmshed O

Now if f € R]a,b], then by Proposition 2.15, we can define a function F': [a,b] — R by

0 ifc=a
(26) F(c):{facf ifa<c<hb.

Theorem 2.19. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.

(i) If there is a continuous function F on [a,b] which is differentiable on (a,b) with F' = f,
then fabf = F(b) — F(a). In this case, F is called an indefinite integral of f. (note: if
Fy and Fs both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Fy = F1 + constant).

(ii) The function F defined as in Eq. 2.6 above is continuous on [a,b]. Furthermore, if f is
continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).
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Proof. For Part (i), notice that for any partition P :a =x9 < --+ < 2, = b, then by the Mean Value
Theorem, for each [.’L’i_l, SL‘Z'], there is fl S (xi_l, l‘l) such that F(l‘l) —F(.’Ei_l) = F,(fl)Al‘l = f(fl)Al‘l
So, we have

L(f,P) <Y f(&)Ax; = F(x;) — F(zi1) = F(b) — F(a) <U(f, P)
for all partitions P on [a,b]. This gives

/:fz/:fSF(b)—F(a) S/:fz/abf
as desired. o

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(x)—F(c)| = | [ f| < M(z—c). So,limg st F(z) = F(c). Similarly, we also have lim,_,._ F(z) =
F(c). Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any ¢ > 0 with a < ¢ < ¢+t < b, we have

1 1 c+t
inf f(a) < S(Fett) — F(e)) = - / F< sw ).
T€[e,c+t] t tJe z€[e,c+t]

1 1
Since f is continuous at ¢, we see that tli]réaJr ;(F(c—i—t) —F(c)) = f(c). Similarly, we have tlim —(F(c+
—

—0—t

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O

Definition 2.20. For each function f on [a,b] and a partition P :a = xy < --- < x, = b, we call
R(f,P,{&}) = Zﬁvzl f(&)Ax;, where & € [xi—1,x;], the Riemann sum of f over |a,b].
We say that the Riemann sum R(f, P,{&}) converges to a number A as ||P|| — 0, write A =
||1191|]|moR(f’ P,{&}), if for any € > 0, there is § > 0 such that

5

A= R(f, P {&}H] <e
whenever | P|| < ¢ and for any & € [xi—1,x;].

Proposition 2.21. Let f be a function defined on [a,b]. If the limit mOR(f, P, {&}) = A exists,
—>

li
171
then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = zg <
- < @y, = bsuch that | Y ), f(&)Axk| < 1+ |A| for any &, € [z_1,2x]. Since f is unbounded, we
may assume that f is unbounded on [a, z1]. In particular, we choose & = xy, for k = 2,...,n. Also, we
can choose ) € [a, z1] such that

[F(EDIAD > 1+ |A] + | Y f(ar) Ayl.
k=2

It leads to a contradiction because we have 1+ [A| > |f(&)|Az1 — | D p_y f(xr)Azg|. The proof is
finished. .

Lemma 2.22. f € Rla,b] if and only if for any € > 0, there is 6 > 0 such that U(f,P) — L(f,P) <e¢
whenever || P|| < 6.

Proof. The converse follows from Theorem 8.3.
Assume that f is integrable over [a,b]. Let & > 0. Then there is a partition @ : a = yo < ... < y; = bon
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[a,b] such that U(f,Q) — L(f,Q) < . Now take 0 < 6 < £/l. Suppose that P:a =129 < ... <z, =b
with ||P|| < . Then we have

U(f,P)—L(f,P)=1+11I
where
I= Z wi(f, P)Ax;;
:QN[x;_1,x;]=0
and
IT = > wilf, P)Ag
:QN[xi—1,7:]F0
Notice that we have
I<U(f,Q)—L(f,Q)<e
and
m<M-my Y An< (M—m)-2l-§:2(M—m)s.
:QN[x; 1,270
The proof is finished. ]

Theorem 2.23. f € Ra,b| if and only if the Riemann sum R(f, P,{&}) is convergent. In this case,
b
R(f,P,{&}) converges to / f(z)dz as ||P|| — 0.

Proof. For the proof (=) : we first note that we always have

and \
L(.P) < [ f@)de <UP)

for any partition P and §; € [z;—1, z;].
Now let € > 0. Lemma 2.22 gives 6 > 0 such that U(f, P) — L(f, P) < ¢ as ||P|| < §. Then we have

b
| / f(x)dz — R(f, P.{&})] < ¢

b
as ||P|| < ¢ and & € [x;—1, x;]. The necessary part is proved and R(f, P,{&;}) converges to / f(z)dz.

a

For (<) : assume that there is a number A such that for any € > 0, there is 6 > 0, we have
A-e< R(f,P,{fz}) <A+e

for any partition P with ||P|| < § and & € [z;—1, z4].

Note that f is automatically bounded in this case by Proposition 2.21.

Now fix a partition P with ||P|| < 0. Then for each [z;—1,x;], choose & € [zi_1,x;] such that
M;(f,P) —e < f(&). This implies that we have

U(f,P)—e(b—a) < R(f,P{&}) < A+e.

Thus, we have shown that for any € > 0, there is a partition P such that

(2.7) /bf(x)da: <U(f,P)<A+e(l+b—a).
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By considering —f, note that the Riemann sum of —f will converge to —A. The inequality 8.1 will
imply that for any € > 0, there is a partition P such that

A—5(1+b—a)§/bf(x)dmg/bf(x)dx§A+e(1+b—a).

The proof is complete. O

Theorem 2.24. Let f € R[c,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C function with
Fa) = ¢ and f(b) =

Then f o ¢ € R[a,b|, moreover, we have

d b
/ f(z)dz = / (o) (D)t

Proof. Let A = fcd f(x)dz. By using Theorem 2.23, we need to show that for all € > 0, there is 6 > 0
such that

A= F(0(&)d (&) Ati| < €

for all &, € [tx—1,t;] whenever Q :a =ty < ... < tm = b with [|Q|| < 4.
Now let € > 0. Then by Lemma 2.22 and Theorem 2.23, there is §; > 0 such that

(2:8) A=Y flm)Day| < e
and
(2.9) Zwk(f, P)Axp <e

for all ny € [zk—1, 2] whenever P:c=1x¢ < ... <z, = d with || P]| < d1.

Now put z = ¢(t) for t € [a,b].

Now since ¢ and ¢’ are continuous on [a, b], there is 6 > 0 such that |¢(t) — ¢(t')] < 01 and |¢'(t) —
¢ ()| < e for all t,t" infa,b] with |t —t'| <.

Now let Q :a =ty < ... <ty =0bwith |Q| < 6. If we put x, = ¢(t;), then P:c=2p < .... <z, =d
is a partition on [¢,d] with || P|| < d; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [tx_1,tx], there is & € (tk—1,tx) such that

Axy = d(tr) — ¢tr—1) = ¢'(§) Aty
This yields that
(2.10) |Azy — ¢ (6) Dty| < eAty

for any & € [ty—1,tx) for all k = 1,...,m because of the choice of 4.
Now for any & € [tx—1,tx], we have

JA =" F(0(&R) (&) Otr| < 1A= F(S(E0))¢ (&) Aty
(2.11) H1D T FBENS (G At — Y F(O(E0) e (&) At

HID D F OGN () Atk — > F(D(6R)D (&) Aty
Notice that inequality 8.2 implies that

[A =" F(AEND (& At] = A= F(@(&))Ax| <e.

Moreover, since we have |¢'({}) — ¢’(§k)| < e for all k =1,..,m, we have

1> FOENG () At = > F(B(€0)0 (&) Aty < M(b—a)e
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where |f(x)| < M for all z € [c,d].
On the other hand, by using inequality 8.4 we have

| (&) Dtr| < Ay + ety

for all k. This, together with inequality 8.3 imply that

1D FBENS (&) At — > F(6(8k))0 (&) At
< Zwk (f: P)|¢' (k) Dti] (- ¢(ER), d(Ek) € [zh-1,21])
< wi(f, P) Ay + eAty)
<e+2M(b—a.
Finally by inequality 8.5, we have
|A =" F((&)0 (&) Aty| <&+ M(b—a)e ++2M (b — a)e.

The proof is complete. O

3. IMPROPER RIEMANN INTEGRALS

Definition 3.1. Let —0co < a < b < o0.

(i) Let f be a function defined on [a,00). Assume that the restriction fliq ] is integrable over
o0 T
[a,T] for all T > a. Put / f:= lim / [ if this limit exists.
a T—oo Jq
Similarly, we can define ffoo fif f is defined on (—o0,b).

b b
(i) If f is defined on (a,b] and fli.y € Rlc,b] for all a < c < b. Put/ f = lim / foafat

c—a+ c
exists.

Similarly, we can define f;f if f is defined on [a,b).
(iii) As f is defined on R, if [;° f and ffoo f both exist, then we put [*_f = f?oo f+ 1
In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Example 3.2. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

oo
I'(s) := / e % dx
0
for s € R. Then I'(s) is convergent if and only if s > 0.

Proof. Put I(s f 2*te dz and I1(s) := [ a* " 'e ®dx. We first claim that the integral I1(s)
is convergent for all s € R.
In fact, if we fix s € R, then we have

ms—l

xhanolo ex/2 =0

So there is M > 1 such that o < 1 for all x > M. Thus we have

o0 oo
0< / e % dx < / e 24y < 0.
M M
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Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

Uy Uy —lInn otherwise .

Thus the integral I(s) = lim 25 le™®dr is convergent if s > 0.

Conversely, we also have

1 .
/1$81€xdl‘>61/1x51dw— e?(1—775) if s—1+#—1;
" N " —ellnn otherwise .

So if s <0, then fnl " te~%dx is divergent as n — 04. The result follows. O

4. SOME RESULTS OF SEQUENCES OF FUNCTIONS

Proposition 4.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(z) point-wise converges to a function f(x) on (a,b);

(ii) : each f, is a C' function on (a,b);

(i1i) : fl, — g uniformly on (a,b).
Then f is a Ct-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each z with ¢ < z < b (similarly, we can prove it in the same way as
a < x < c¢), the Fundamental Theorem of Calculus implies that

= [ s+ gifo)

Since f], — g uniformly on (a,b), we see that

[ e — [ gteya

This gives

(4.1) fla) = [ gttt + (o)

for all x € (¢,b). Similarly, we have f(z) = [T g(t)dt + f(c) for all z € (a,b).

On the other hand, g is continuous on (a b) since each f] is continuous and f] — ¢ uniformly on
(a,b). Equation 9.1 will tell us that f’ exists and f’ = g on (a,b). The proof is finished. O

Proposition 4.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim f,,(c) ewists;
(i1): fl converges uniformly to a function g on (a,b).

Then
(a): fn converges uniformly to a function f on (a,b);

(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let € > 0. Then by the assumptions (7) and (i7), there is a positive integer N such that

[fm(c) = fu(0)] <& and |f},(x) = f(z)] <e
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for all m,n > N and for all € (a,b). Now fix ¢ < z < b and m,n > N. To apply the Mean Value
Theorem for f,,, — f, on (¢, z), then there is a point £ between ¢ and x such that

(4.2) fm(@) = ful@) = fimlc) = fule) + (fn(€) = fu(©)) (@ — o).
This implies that
|fn(2) = fa(@)] < |fim(c) = fa(@)] + [fra() = fa(llz —c| <+ (b—a)e
for all m,n > N and for all z € (¢,b). Similarly, when z € (a,c), we also have
|fm(@) = fa(2)] <€+ (b—ae.

So Part (a) follows.
Let f be the uniform limit of (f,,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

o 1@ = f(w)

T—u €T —U

= g(u).
Let € > 0. Since (f}) is uniformly convergent on (a,b), there is N € N such that
(4.3) (@) = fr(@)] < e

for all m,n > N and for all z € (a,b)
Note that for all m > N and z € (a,b) \ {u}, applying the Mean value Theorem for f,, — fx as before,

we have
fm(x) = [n(@) _ fn(u) — fn(u)

r—1Uu r—1Uu

+ (&) = fn (&)

for some £ between u and x.
So Eq.9.3 implies that

fm(@) = fm(w) _ n(x) = fn(w)

4.4 <
(4.4) = o I=se
for all m > N and for all z € (a,b) with = # w.
Taking m — oo in Eq.9.4, we have

F@) = F) _ fule) = ),

T —u T —u
Hence we have

<or ELZI gy

So if we can take 0 < ¢ such that \w — fy(w)] < e for 0 < |z —u| <6, then we have

f(x) = f(u)

—f! <9
12T gy <2
for 0 < | —u| < 0. On the other hand, by the choice of N, we have |f],(y) — fn(y)| < € for all
y € (a,b) and m > N. So we have |g(u) — fy(u)| < e. This together with Eq.9.5 give

|f@)—fW)

r—1Uu

(4.5) |

—g(u)] <3¢

as 0 < |z — u| <, that is we have

T—U r—Uu
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The proof is finished. O

Remark 4.3. The uniform convergence assumption of (f)) in the Propositions above is essential.

Example 4.4. Let fu(z) := 15557 for v € (—1,1). Then we have
1 —n22? 0 if © # 0;
= lim f/ =lim———— = ’
g(x) = lim f},(z) := lim L {1 if o =0.
On the other hand, f, — 0 uniformly on (—=1,1). In fact, if f}(1/n) =0 for alln = 1,2, .., then f,
attains the mazimal value fr(1/n) = ﬁ at x = 1/n for each n = 1,... and hence, f, — 0 uniformly
on (—1,1).

So Propositions 9.1 and 9.2 does not hold. Note that (f]) does not converge uniformly to g on (—1,1).

Proposition 4.5. (Dini’s Theorem): Let A be a compact subset of R and f, : A — R be a sequence
of continuous functions defined on A. Suppose that

(i) for each x € A, we have fp(x) < fot1(z) for alln =1,2...;
(ii) the pointwise limit f(x) :=lim,, f,(x) exists for all x € A;
(iii) f is continuous on A.

Then f, converges to f uniformly on A.
Proof. Let g, := f — fp defined on A. Then each g, is continuous and g,(z) | 0 pointwise on A. It

suffices to show that g, converges to 0 uniformly on A.
Method I: Suppose not. Then there is € > 0 such that for all positive integer N, we have

(4.6) gn(Tn) > €.

for some n > N and some x, € A. From this, by passing to a subsequence we may assume that

gn(xp) > € for all n = 1,2, .... Then by using the compactness of A, there is a convergent subsequence

(xn,) of (x,) in A. Let z := h/?lmn’“ € A. Since g, (2) | 0 as k — oo. So, there is a positive

integer K such that 0 < g,,(2) < €/2. Since gp, is continuous at z and limz,, = z, we have
(2

lim g, (2n,;) = gny (2). So, we can choose i large enough such that ¢ > K
(2

Ini (Tn;) < Gng (Tn;) < €/2

because g (zn,) 4 0 as m — oco. This contradicts to the Inequality 4.6.

Method II: Let € > 0. Fix x € A. Since gn(z) | 0, there is N(x) € N such that 0 < g,(z) < ¢ for
all n > N(x). Since gy(,) is continuous, there is d(x) > 0 such that gy(,)(y) < ¢ for all y € A with
|z —y| < d0(x). If we put J, := (x—0(x),z+d(x)), then A C |J,c4 Jo. Then by the compactness of A,
there are finitely many z1, ..., &, in A such that A C J,, U---UJ,, . Put N := max(N(z1), ..., N(z)).
Now if y € A, then y € J(x;) for some 1 < i < m. This implies that

In(Y) < I (y) <€

for all n > N > N(z;). O



23

5. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

o0 oo
Definition 5.1. We say that a series Z ay, 1s absolutely convergent ifz lan| < oo.

n=1 n=1
oo

Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.

n=1

o0
-1 n+1
Example 5.2. Important Example : The series Z% 18 conditionally convergent when
n

n=1
O<a<l.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.

For instance, if we consider the function f :[1,00) — R given by

(_1)n+1
nOé

fz) =

if n<z<n+l.

o0
If o =1/2, then / f(z)dz is convergent but it is neither absolutely convergent nor square integrable.
1

oo
Notation 5.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Zaa(n) is called an

n=1

o0
rearrangement of E Q.

n=1

Example 5.4. In this example, we are going to show that there is an rearrangement of the series

o )
-1 i+1
E i 1s divergent although the original series is convergent. In fact, it is conditionally conver-
i
=1
gent.

We first notice that the series ), 22.1_1 diverges to infinity. Thus for each M > 0, there is a positive
integer N such that

for alln > N. Then there is N1 € N such that

N1

1 1
Z21'—1_§>1‘

=1

By using (%) again, there is a positive integer No with N1 < Na such that

Ny

1 1 1 1
221'—1_§+ Z 51 4%

i=1 N1<i<Ns

To repeat the same procedure, we can find a positive integers subsequence (Ny) such that
N1

1 1 1 1 1 1
domiat X moiatv - X moimh

=1 N1<i<Na Ni_1<i<Ng
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(_1)n+1, then one can find a bijection o : N — N such that
(_1)i+1

7

for all positive integers k. So if we let a,, =

oo [e.e]
the series Z ag(;) 18 an rearrangement of the series Z and diverges to infinity. The proof
1

i=1

18 ﬁm’shed.zz

o o0
Theorem 5.5. Let Zan be an absolutely convergent series. Then for any rearrangement Z%(n)

n=1 n=1

o0 o0
1s also absolutely convergent. Moreover, we have Z Gp = Z Ag(n)-
n=1 n=1
Proof. Let 0 : {1,2...} — {1,2...} be a bijection as before.

We first claim that >, Ag(n) 18 also absolutely convergent.
Let € > 0. Since ), |a,| < oo, there is a positive integer N such that

|aN+1|+ ......... +|aN+p|<€ ......... (*)
for all p = 1,2.... Notice that since ¢ is a bijection, we can find a positive integer M such that
M > max{j:1<o0(j) < N}. Then o(i) > N if i > M. This together with () imply that if i« > M
and p € N, we have

|ag(irny| + e |@o(itp)| <&

Thus the series ) a,(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y- an = >, o). Put I =3 a, and I’ = 3 a,(n). Now let € > 0. Then
there is V € N such that

N
‘l_zan|<g and  |angi| 4o - +langp| <& oeoiens (s5)
n=1
for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)} and
M
" — Z%(i)’ < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (x%) gives
i=1

N M
D =D aepl < D lail<e
n=1 i=1

N<i<oo
We can now conclude that

N N M M
=< =D anl +1D_an =D o] + 1 ase — 1] < 3¢
n=1 n=1 =1 i=1
The proof is complete. ]
6. POWER SERIES
Throughout this section, let
o0
f(z) = Zaifﬂ ............ (%)
i=0

denote a formal power series, where a; € R.

Lemma 6.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(x) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n] for any 0 < n < |c|.
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Proof. For Part (i), note that since f(c) is convergent, then lim a,,¢™ = 0. So there is a positive integer
N such that |a,c"| <1 for all n > N. Now if we fix |z| < ]c| then |z/c| < 1. Therefore, we have

00 N—-1
D lanlla™ <Y a2+ D fanc®|z/c* < Z janllz"+ Y | /e]" < oo,
n=1 n=1 n>N n>N

So Part (7) follows.

Now for Part (i7), if we fix 0 < n < |¢| ,then |a,z™| < |apn|™ for all n and for all z € [—n,n]. On the
other hand, we have ) |a,n"| < oo by Part (i). So f converges uniformly on [—n,n] by the M-test.
The proof is finished. O

Remark 6.2. In Lemma 11.9(it), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c,c| in geneml

For example, f(z):=1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 6.3. Call the set dom f:={x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r :=sup{|c|: ¢ € dom f} < co. Then r is called the radius of convergence

of f.

Remark 6.4. Notice that by Lemma 11.9, then the domain of convergence of f must be the interval
with the end points +r if 0 < r < oo.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f =R.

Example 6.5. If f(z) =Y _..°  nla™, then r = (0). In fact, notice that if we fix a non-zero number
x and consider lim,, |(n + 1)!1z"*|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor =0 and dom f = (0).

Example 6.6. Let f(z) = 1+ 320 2"/n". Notice that we have lim,, [z™/n™|"/" = 0 for all . So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 6.7. Let f(z) = 1+ o2, 2"/n. Then lim, |2"/(n + 1)| - |n/2"| = |z| for all z # 0.
So by the ration test, we see that if |x| < 1, then f(z) is convergent and if |x| > 1, then f(x) is

divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).

Example 6.8. Let f(x) = Y a"/n%. Then by using the same argument of Example 11.7, we have
r = 1. On the other hand, it is known that f(£1) both are convergent. So dom f = [—1,1].

Lemma 6.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
O<np<r.

Proof. Tt follows from Lemma 11.1 at once. g

Remark 6.10. Note that the Example 11.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 11.7. Then f does not converges on (—1,1). In fact, if we let
sn(z) = > 000 apz®, then for any positive integer n and 0 < x < 1, we have

|son () — sp(x)| = R 4+
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From this we see that if n is fized, then |son(x) — sp(x)| — 1/2 as © — 1—. So for each n, we can find
0 <z <1 such that |so,(x) — sp(z)] > 5 — 3 = i Thus f does not converges uniformly on (—1,1) by
the Cauchy Theorem.

Proposition 6.11. With the notation as above, let ¢ = lim |an\1/n or lim ‘771-&-’1‘ provided it exists.
n
Then
% if 0</{< o0;
r=4¢0 if £ =00
00 if £=0.

Proposition 6.12. With the notation as above if 0 < r < oo, then f € C*(—r,r). Moreover, the
k-derivatives f*)(z) = donskakn(n—1)(n—2)- - (n —k+ 12" for all x € (—r,7).

Proof. Fix ¢ € (—r,r). By Lemma 11.9, one can choose 0 < 1 < r such that ¢ € (—n,n) and f
converges uniformly on (—n, 7).

It needs to show that the k-derivatives f(¥)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y °° ((an2™) = >°° na,z™ !, then it also has the same radius r be-
cause limy, |na,|"/" = lim, |a,|'/". This implies that the series Y .°° | na,z"~! converges uniformly
n (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and
F(0) = 355 a1,

So the result can be shown inductively on k. O

Proposition 6.13. With the notation as above, suppose that r > 0. Then we have

/f t)dt = Z/ ant™dt = n+1na;

+1

for allx € (—r,r).

Proof. Fix 0 < < r. Then by Lemma 11.9 f converges uniformly on [0, z]. Since each term a,t" is
continuous, the result follows. ]

Theorem 6.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x =r (resp. x = —r), that is Ii}n_f(a:) = f(r).

Proof. Note that by considering f(—x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at = 1 as desired.
Let € > 0. Since f(1) is convergent, then there is a positive integer such that

for n > N and for all p =1,2.... Note that for n > N; p=1,2... and = € [0, 1], we have

3n+p(l’) . sn(:c) — an+1xn+1 4 an+2xn+1 + an+3xn+1 g + an+pxn+1
+ apto (xn+2 o anrl) + an+3(xn+2 o anrl) T + an+p(xn+2 . xn+1)
(6.1) + Gpy3(@™3 — ") + appp(z™t3 — 2"t

+ an—l—p(anrp _ anrpfl)'
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Since z € [0,1], |a"Th+L — gntk| = gntk _ gnthtl Qo the Eq.11.1 implies that
[5n4p(2) =80 (2)] < e(@ni1+(@" =2 2)+ (2" 2" ) b (@I T2 )) = (22" 2" < 2e.

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(z) := f(rz) = Y, a,r"z". Note that lim,, |a,r"|/™ = 1
and g(1) = f(r). Then by the case above,, we have shown that

Fr) = g(1) = i g(x) = lim f(z).
r—1— T—r—
The proof is finished. O

Remark 6.15. In Remark 11.10, we have seen that f may not converges uniformly on (—r,r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r| in this case.

7. REAL ANALYTIC FUNCTIONS

Proposition 7.1. Let f € C*°(a,b) and c € (a,b). Then for any x € (a,b) \ {c} and for any n € N,
there is & = £(x,n) between ¢ and x such that

n ), o p(nt1)
@=L+ [T gra
k=0 ¢ )

> £(k)
Call Z / k'(c) (z — &)k (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. O

Definition 7.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § > 0 and a power series Y oo ax(z — ¢)* such that

f(z) = Z ag(z —c)f (%)
k=0
forallx € (¢ —d,c+6) C (a,b).

Remark 7.3.
(i) : Concerning about the definition of a real analytic function f, the expression (x) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 11.12, we have seen that f € C*(a,b) and

F®(c)
LR (%)

ap =

forallk=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~1/a? if x#0;
f(x)_{o if z=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is 6 > 0 such that ai, = 0 for all k by the Eq.(x*) above and hence f(x) =0
for all x € (—0,0). It is absurd.
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(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C°°.

Proposition 7.4. Suppose that f(x) := > 77 ak (x—c)F is convergent on some open interval I centered

at ¢, that is I = (¢ —r,c+ 1) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C*°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose § > 0 such that (z — d,z + ) C I. We are going to show that

for all z € (z — 0,2 + 9).
Notice that f(z) is absolutely convergent on I. This implies that

fz) = Zak(x — 24 2)F
k=0
00 k
k(k—1)----- k—j+1

:Zakz ( ) i ( )(a: z)I k0
k=0 7=0
°© — 2}

=3 (k1) (4 gty T2
J=0 k>j J:
 £()

sz .'(Z)(x—z)]
7=0

for all x € (z — §,2 + 0). The proof is finished. O

Example 7.5. Let a« € R. Recall that (1 + x)® is defined by e n(+2) for 2> —1.

Now for each k € N, put
<a> B {a(al)---l-g-!-(ak+1) Zf k 7& 0;

1 if ©=0.
Then

whenever |z| < 1.
Consequently, f(z) is analytic on (—1,1).

Proof. Notice that f*)(z) = e —1)------ (@ —k+1)(1+2)** for |z < 1.
Fix |z| < 1. Then by Proposition 12.1, for each positive integer n we have
n—1
MO k[0 ne1
f(x)—z Lt ; (n_l)!(ac—t) dt

k=0
So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that ()() ()( )
AR ne1,, _ (& n—
/O(n—1)!<”“°_t) R ey
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(n)
Now write &, = n,x for some 0 <7, <1 and R,(x) := ‘(f(glr;)'(:c — &))" 'z, Then
n—1)!

Rp(z) = (a—n+1)< >(1—|—77na:)a_"(ac—nn:n)”_1x = (a—n+1) (nf 1>x”(1+nnx)a—1(11+_7;1’;)”—1.

We need to show that R, (x) — 0 as n — oo, that is the Taylor series of f centered at 0 converges to

n—1

o0
f. By the Ratio Test, it is easy to see that the series Z(a —k+1) <Z> y* is convergent as |y| < 1.
k=0

This tells us that lim|(a — n + 1) “ " = 0.
n n
On the other hand, note that we always have 0 < 1 —n, < 1+n,z for all n because x > —1. Thus, we

can now conclude that R, (z) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 12.4 at once. The proof is complete. ]
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8. RIEMANN INTEGRALS

Notation 8.1. .

(i) : All functions f, g, h... are bounded real valued functions defined on [a,b]. And m < f < M.
(ii) : P:ra=u1z9 <z < ... < )y = b denotes a partition on |a,b]; Ax; = x; — x;—1 and
||| = max Az;.

(iii) : M;(f,P) :=sup{f(x) : x € [wi—1,x;}; mi(f,P) == inf{f(z) : v € [xi—1,2:}. And wi(f,P) =

() : U(f,P):=> M;(f,P)Az;; L(f,P) := > mi(f,P)Ax;.

(v) @ R(f,PA&}) = 3 f(&)Azi, where & € [x;—1, x5].

(vi) : Rla,b] is the class of all Riemann integral functions on [a,b].
Definition 8.2. We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P| — 0 if
for any € > 0, there is 6 > 0 such that

[A=R(f, P A& <e
for any & € [zi—1, ;] whenever ||P|| < 4.

Theorem 8.3. f € Rla,b] if and only if for any ¢ > 0, there is a partition P such that U(f,P) —
L(f,P) <e.

Lemma 8.4. f € Rla,b] if and only if for any € > 0, there is § > 0 such that U(f,P) — L(f,P) < e
whenever ||P|| < 4.

Proof. The converse follows from Theorem 8.3.
Assume that f is integrable over [a, b]. Let € > 0. Then there is a partition Q: a =yo < ... <y; = bon
[a,b] such that U(f,Q) — L(f,Q) < e. Now take 0 < § < ¢/l. Suppose that P:a=xz¢p < ... <z, =0
with ||P|| < d. Then we have
U(f,P)—L(f,P)=1+1I
where
I= S wilf, P) Az
QN (zi—1,2:)=0
and
IT = S wilf,P)A
:QN(zi—1,%;)#0
Notice that we have
I<U(f,Q) —L(f,Q <e¢
and
IT < (M —m) > Az; < (M —m)-1-
QN (zi—1,7:)#0
The proof is finished. ]

Theorem 8.5. f € R|a,b] if and only if the Riemann sum R(f,P,{&}) is convergent. In this case,
b
R(f, P, {&}) converges to/ f(x)dx as ||P| — 0.

7= (M —m)e.

Proof. For the proof (=) : we first note that we always have

and

b
LD < [ flayde <U(1,9)
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for any &; € [x;—1, ;] and for all partition P.
Now let € > 0. Lemma 8.4 gives 6 > 0 such that U(f,P) — L(f,P) < e as ||P|| < 0. Then we have

b
| / f(@)de — R(f, PG| <

b
as ||P|| < d. The necessary part is proved and R(f, P, {&}) converges to / f(z)dz.

For (<) : there exists a number A such that for any € > 0, there is ¢ > 0,awe have
A—e<R(f,P{&}) <A+e

for any partition P with ||P|| < d and &; € [z;—1, x;].
Now fix a partition P with ||P|| < 4. Then for each [z;_1, x;], choose §; € [z;—1, z;] such that M;(f,P)—
e < f(&)- This implies that we have

U(f,ip)—é‘(b—a)SfR(f,:P,{fZ}) <A+e

So we have shown that for any € > 0, there is a partition P such that

)
(8.1) /f(x)deU(f,iP)SA—i—s(l—i—b—a).

By considering — f, note that the Riemann sum of —f will converge to —A. The inequality 8.1 will
imply that for any € > 0, there is a partition P such that

A—5(1+b—a)§/bf(a:)dx§/bf(x)d:c§A+€(1+b—a).

The proof is finished. O
Theorem 8.6. Let f € R[c,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C* function with

fla) =c and f(b) =d.
Then f o ¢ € Ra,b], moreover, we have

d b
/ f(x)da = / (o) ().

Proof. Let A = fcd f(x)dzx. By Theorem 8.5, we need to show that for all € > 0, there is § > 0 such
that

[A=" F(8(E)) (&) Atr| < &

for all & € [ty_1,tx] whenever Q :a =ty < ... < t,, = b with ||Q|| < 0.
Now let € > 0. Then by Lemma 8.4 and Theorem 8.5, there is d; > 0 such that

(8.2) A= fp) D] < e
and
(8.3) D wr(f,P)Aay < e

for all ny € [rg—1,zx] whenever P:c =z < ... <z, = d with ||P| < d;.

Now put = = ¢(t) for ¢ € [a,b].

Now since ¢ and ¢’ are continuous on [a, b], there is 6 > 0 such that |¢(t) — ¢(¢')] < 01 and |¢'(t) —
¢ ()| < e for all t,t" in[a,b] with |t — | <.

Now let Q:a =ty < ... < ty, = b with ||Q|| < 4. If we put x = ¢(tg), then P:c=x9 < .... <z, = d
is a partition on [c,d] with ||P|| < d; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [t;_1,t], there is £ € (tx—1,t%) such that

Dz = ¢(tr) — P(tp—1) = &' (&) Dt
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This yields that
(8.4) |Axy, — ¢ (&) Dty| < ety

for any & € [ty_1,t] for all kK =1,...,m because of the choice of §.
Now for any & € [tk—1,tk], we have

A=) F(O(R) (&) Ati| < |A — Zf ' (&) Dt
(8.5) HI) T F OGN ()AL — > F(B(E))S (&) At
+| Zf(as(é,:))qb’(fk)mk = F($(&r)9 (&) At
Notice that inequality 8.2 implies that
[A=" FOEN () Dt = [A=D F(9(&) Dy < e.
Also, since we have |¢/(¢}) — ¢’(§k)| < eforall k=1,..,m, we have
1Y FOENS (€Dt — D F($(E0)0 (&) Aty < M(b— a)e

where |f(x)| < M for all z € [c,d].
On the other hand, by using inequality 8.4 we have

¢ (&) Dti| < Ay, + ety

for all k. This, together with inequality 8.3 imply that

1> F (@GN () Atk — > F(d(&R)0 (&) Aty

<Y wi(f P () Atk (o B(E7), D(Ek) € [wr, )

< Wil P)(Aag + eAly)

<e+2M(b—a)e.
Finally by inequality 8.5, we have

A= F(0(&R) (&) Atr| < e+ M(b—a)e + &+ 2M(b — a)e.

The proof is finished. O

Example 8.7. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

I'(s) ::/ e % dx
0

for s € R. Then T'(s) is convergent if and only if s > 0.

Proof. Put I(s fl 2" te™dz and I1(s) := [{°2*"'e ®dx. We first claim that the integral I1(s)
is convergent for all s € R.
In fact, if we fix s € R, then we have

xsfl

lim =0.

T—00 em/2

So there is M > 1 such that o < 1 for all z > M. Thus we have

o0 oo
0< / e dx < / e 2 dy < 0.
M M
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Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11 —pe if s —1#—1;
OS/ :Us_le_xdxﬁ/ z* = {S( w) o ifs—1A -l
n n

—Inn otherwise .

n—0+
Conversely, we also have

1 .
/1 ¥ e e > et /1 25 e = {68(1 — ) it s — 17 -1;
n n

—ellnn otherwise .

1
Thus the integral I(s) = lim / ¥ te ®dx is convergent if s > 0.
U

So if s <0, then fnl ¥ e %dr is divergent as n — 0+. The result follows. O

9. UNIFORM CONVERGENCE OF A SEQUENCE OF DIFFERENTIABLE FUNCTIONS
Proposition 9.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(z) point-wise converges to a function f(x) on (a,b);
(ii) : each f, is a C' function on (a,b);
(i1i) : fl, — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each z with ¢ < z < b (similarly, we can prove it in the same way as
a < x < ¢), the Fundamental Theorem of Calculus implies that

falz) = /I f'(t)dt.

Since f], — ¢ uniformly on (a,b), we see that

/Cx fr(t)dt — /j g(t)dt.

This gives

(9.1) f(z) = / " g(t)dt.

for all x € (¢,b). On the other hand, ¢ is continuous on (a,b) since each f) is continuous and
/! — g uniformly on (a,b). Equation 9.1 will tell us that f’ exists and f’ = g on (¢,b). The proof is
finished. O
Proposition 9.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that

(i): there is a point ¢ € (a,b) such that lim f,(c) exists;

(i1): f], converges uniformly to a function g on (a,b).
Then

(a): fn converges uniformly to a function f on (a,b);

(b): f is differentiable on (a,b) and ' =g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let € > 0. Then by the assumptions (7) and (i7), there is a positive integer N such that

[fm(c) = fu(0)] <& and |f,(x) = f(z)] <e
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for all m,n > N and for all € (a,b). Now fix ¢ < z < b and m,n > N. To apply the Mean Value
Theorem for f,,, — f, on (¢, z), then there is a point £ between ¢ and x such that

(9.2) fm(@) = fu(z) = fin(c) = fule) + (f(&) — fr(&)(z — o).

This implies that

(@) = fu(@)] < 1 fm(c) = fu(Q)] + [ fra(§) = fa(©)llz — | <e+ (b—a)e

for all m,n > N and for all x € (¢,b). Similarly, when = € (a,c), we also have

| fn(z) — f(2)] < e+ (b—a)e.
So Part (a) follows.

Let f be the uniform limit of (f,,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

i £ = (@)

lim = = g(u).

Let € > 0. Since f, — f and f’ — g both are uniformly convergent on (a,b). Then there is N € N
such that

(9.3) [fm(2) = fa(z)] <e and |f,(2) = fo(2)| <e
for all m,n > N and for all x € (a,b)
Note that for all m > N and z € (a,b) \ {u}, applying the Mean value Theorem for f,, — fn as before,

we have
fm(x) = [n(@) _ fn(u) — fn(u)
T —u N T —u
for some & between u and =x.
So Eq.9.3 implies that

+ (&) = fn (&)

fm(x) = fm(u) — fn(z) = fn(u)

4 <
(94) | Tr—u Tr—u |se
for all m > N and for all = € (a,b) with = # u.
Taking m — oo in Eq.9.4, we have

‘f(x) —flw)  fn(x) = fN(u>| <e

T —u T —u
Hence we have

fx) = f(u)

flz) = flu)  fn(z) —J”Jv(U)|Jr |fN(fL') —In(u)

!/
— <
DIy < S e V2O )
fn(x) — fn(u)
< _ - .
<o DI gy
So if we can take 0 < § such that |W — fy(w)] < efor 0 < |z —u| < 4§, then we have
z)— f(u
05 HD =IO gy < 2

for 0 < | —u| < 0. On the other hand, by the choice of N, we have |f],(y) — fn(y)| < € for all
y € (a,b) and m > N. So we have |g(u) — fy(u)] < e. This together with Eq.9.5 give

DT g < 5
T —u
as 0 < |z —u| < 4, that is we have

T—U r—Uu
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The proof is finished. O

Remark 9.3. The uniform convergence assumption of (f],) in Propositions 9.1 and 9.2 is essential.
Example 9.4. Let f,(z) :=tan~! nx for x € (—1,1). Then we have

/2 if x> 0;
f(z) :=limtan ' nz = { 0 if © = 0;
—7/2 if ¢ <0.

Also g(z) := lim,, f(z) = lim,, 1/(1 4+ n?22) = 0 for all z € (—1,1). So Propositions 9.1 and 9.2 does
not hold. Note that (f]) does not converge uniformly to g on (—1,1).

10. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

o0 oo
Definition 10.1. We say that a series Z an, 1s absolutely convergent ifz lan| < oo.

n=1 n=1
oo

Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.
n=1

1)n+1

o0
Example 10.2. Important Example : The series Z (_7

- 1s conditionally convergent when
n

n=1

O<a<l.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.

For instance, if we consider the function f :[1,00) — R given by

(1!

fla) =

if n<zr<n+l

o0
If a« =1/2, then / f(z)dz is convergent but it is neither absolutely convergent nor square integrable.
1

[o.¢]
Notation 10.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Zaa(n) is called an

n=1

o0
rearrangement of E Q.

n=1

Example 10.4. In this ezample, we are going to show that there is an rearrangement of the series

o )
-1 i+1
E i 1s divergent although the original series is convergent. In fact, it is conditionally conver-
i
=1
gent.

We first notice that the series ), 22—1_1 diverges to infinity. Thus for each M > 0, there is a positive
integer N such that

n

Z%l_le ......... (%)

=1
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for all n > N. Then there is N1 € N such that
N1

Y51
c—~ 2 —1 2 ’
=1

By using (%) again, there is a positive integer No with N1 < Na such that

Ny

1 1 1 1
= ——>2
Z:21—1 2+ Z 2 —1 4>
=1 N1<i<No

To repeat the same procedure, we can find a positive integers subsequence (Ny) such that

S 1 1
— 4y — —— >k
Yot X moioit 2 i
N1<1<N2 Ni_1<i<Ng
for all positive integers k. So if we let a, = (_17): , then one can find a bijection o : N — N such that
oo 4
-1 i+1
the series Z ag(;) 18 an rearrangement of the series Z (=1) and diverges to infinity. The proof
i
=1 i=1

1$ finished.

oo o0
Theorem 10.5. Let Z an be an absolutely convergent series. Then for any rearrangement Z Ao (n)

n=1 n=1

s also absolutely convergent. Moreover, we have Z Gp = Z Ag(n)
n=1 n=1

Proof. Let o : {1,2...} — {1,2...} be a bijection as before.

We first claim that ) a,(,) is also absolutely convergent.

Let € > 0. Since ), |a,| < oo, there is a positive integer N such that

[ TR Flangpl <& ceeeeee (%)
for all p = 1,2.... Notice that since ¢ is a bijection, we can find a positive integer M such that
M > max{j: 1 < 0(j) < N}. Then o(i) > N if ¢ > M. This together with (%) imply that if i > M
and p € N, we have

|a0'(i+1)| e R |a0'(i+p)‘ < €.
Thus the series ) a,(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y an, = >, o). Put I =3 a, and I’ = 37 a,(n). Now let ¢ > 0. Then
there is V € N such that

‘Z_Zan’ < € and ‘aN-i-l’—’_ ...... +|aN+p‘ < E v (**)
n=1
for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)} and
M
- Zaa(i)| < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (xx) gives
i=1

N M
D= < D ul <e
n=1 i=1

N<i<oo

We can now conclude that
N

N M M
L=V < 0= anl+ 1D an =Y aop| + 1) aoe — 1] < 3e.

n=1 n=1 =1 =1
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The proof is complete. O

11. POWER SERIES

Throughout this section, let

denote a formal power series, where a; € R.

Lemma 11.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(x) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n| for any 0 <n <|c|.

Proof. For Part (i), note that since f(c) is convergent, then lim a,c™ = 0. So there is a positive integer
N such that |a,c™| <1 for all n > N. Now if we fix |z| < |c| then |z/c| < 1. Therefore, we have

Z anlla"| < Z anlla| + 3 lanela/e]” < Z anlla| + 3 fefel" < oo
n>N n>N
So Part (7) follows.
Now for Part (i7), if we fix 0 < n < || ,then |ayz™| < |apn|™ for all n and for all z € [-n,n]. On the
other hand, we have ) |a,n™| < oo by Part (i). So f converges uniformly on [—n,n] by the M-test.
The proof is finished. O

Remark 11.2. In Lemma 11.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c,c| in geneml

For example, f =1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 11.3. Call the set dom f :={x € R: f(c) is convergent } the domain of convergence of
f for convenience. Let 0 < r:=sup{|c|:c € dom f} <oo. Then r is called the radius of convergence

of f.

Remark 11.4. Notice that by Lemma 11.9, then the domain of convergence of f must be the interval
with the end points +r if 0 < r < oo.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f =1R.

Example 11.5. If f(z) = > _.2  nla™, then r = (0). In fact, notice that if we fix a non-zero number
x and consider lim,, |(n + 1)!2"Y|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor=0 and dom f = (0).

Example 11.6. Let f(z) = 1+ >.°°, 2" /n™. Notice that we have lim,, |z"/n"|'/" = 0 for all z. So
the root test implies that f(x) is convergent for all x and then r = co and dom f =R.

Example 11.7. Let f(z) = 1+ > 2% 2"/n. Then lim, [z /(n + 1)| - [n/2"| = |z| for all x # 0.
So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).
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Example 11.8. Let f(z) = Y. 2" /n?. Then by using the same argument of Example 11.7, we have
r = 1. On the other hand, it is known that f(£1) both are convergent. So dom f = [—1,1].

Lemma 11.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
0O<n<r.

Proof. Tt follows from Lemma 11.1 at once. 0

Remark 11.10. Note that the Example 11.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 11.7. Then f does not converges on (—1,1). In fact, if we let
sn(z) = > 000 apz®, then for any positive integer n and 0 < x < 1, we have

xn
R + o
From this we see that if n is fized, then |son(x) — sp(x)] — 1/2 as © — 1—. So for each n, we can find
0 <z <1 such that |san(x) — sp(z)| > % — % = i. Thus f does not converges uniformly on (—1,1) by
the Cauchy Theorem.

520 () — sp ()]

Proposition 11.11. With the notation as above, let ¢ = lim ]anll/” or lim ’C|Ln+|1| provided it exists.
n
Then
! if 0< < o0;
r=140 if €= oc;
o0 if £=0.

Proposition 11.12. With the notation as above if 0 < r < oo, then f € C*°(—r,r). Moreover, the
k-derivatives f*)(z) = donskakn(n—1)(n —2) - (n—k+ 12" for all x € (—r,7).

Proof. Fix ¢ € (—r,r). By Lemma 11.9, one can choose 0 < 1 < r such that ¢ € (—n,n) and f
converges uniformly on (—7, 7).

It needs to show that the k-derivatives f(*)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y o0 ((an2™) = >.°°  na,z™ ', then it also has the same radius r be-
cause limy, [na,|"/" = lim, |a,|'/". This implies that the series .°° | na,z""' converges uniformly
on (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and
£(0) = 300y nage .

So the result can be shown inductively on k. ([l

n—1

Proposition 11.13. With the notation as above, suppose that r > 0. Then we have

x 0 x 0 1
t)dt = Dt = Lt
/Of() ;)/oa >

0

for allx € (—r,r).

Proof. Fix 0 < < r. Then by Lemma 11.9 f converges uniformly on [0, z]. Since each term a,t" is
continuous, the result follows. O

Theorem 11.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x =r (resp. x = —r), that is lim f(z) = f(r).
T—r—
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Proof. Note that by considering f(—=x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at z = 1 as desired.
Let € > 0. Since f(1) is convergent, then there is a positive integer such that

for n > N and for all p =1,2.... Note that for n > N; p=1,2... and z € [0, 1], we have

5n+p(x) —sn(x) = an+1xn+1 + an+2xn+1 + an+3x”+1 T + anerl,n—f—l
+ an+2(xn+2 — .Tn+1) + an+3(x”+2 — m”"H) e + an+p(xn+2 _ ZCn—H)
(111) + an+3(x"+3 — xn+2) Foeeeenn + an+p($n+3 xn+2)

+ aner(xn-‘rp _ xn-&-p—l)'

Since z € [0,1], |a"Th+L — gntk| = gntk _ gnth+l Qo the Eq.11.1 implies that
|$np(T) =50 (2)| < e(Tp1+(2" T2 T2) 4 (2" T2 g ) o (TP P)) = (22" 2" P) < 2e.

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(z) := f(rz) = 3., a,r"z™. Note that limy, [a,r"|"/" = 1
and g(1) = f(r). Then by the case above,, we have shown that

f(r)=9(1) = lim g(z) = lim f(z).
The proof is finished. O

Remark 11.15. In Remark 11.10, we have seen that f may not converges uniformly on (—r,r).
However, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r]| in this case.

12. REAL ANALYTIC FUNCTIONS

Proposition 12.1. Let f € C*®(a,b) and ¢ € (a,b). Then for any x € (a,b) \ {c} and for any n € N,
there is € = £(x,n) between ¢ and x such that

n ) (¢ z f(n+1)
fla)y=>" / !( )(x —c)¥ +/ fn,(t)(x —t)"dt
k=0 ¢ ’

k

> £(k)
Call Z / k'(c) (z — &)k (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. ([l

Definition 12.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § > 0 and a power series > o ar(z — ¢)* such that

f(z) = Z ag(z—c)F (%)
k=0

for all x € (¢ —6,¢+0) C (a,b).

Remark 12.3.



40 CHI-WAI LEUNG

(i) : Concerning about the definition of a real analytic function f, the expression (%) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 11.12, we have seen that f € C*(a,b) and

*) (¢
T LIRS "

forallk=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~/ if ©#0;
ﬂ@_{o if ©=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is 6 > 0 such that ap = 0 for all k by the Eq.(xx) above and hence f(x) =0
for all x € (=6,0). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is

similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C°.

Proposition 12.4. Suppose that f(z) := > 2, ax(z — c)¥ is convergent on some open interval I
centered at ¢, that is I = (¢ —r,c+ 1) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose § > 0 such that (z — d,z + ) C I. We are going to show that

© f(j)(z)

7 (z—2).

flz) =

=0
for all z € (z — 0,2 + 9).
Notice that f(z) is absolutely convergent on I. This implies that

f(zx) :Zak(x—z+z)k
k=0
00 k
k(k—1)------ k—j+1

:Zakz ( ) i ( )(a: 2)I k0
k=0 =0
e — )]

=S k=) e (ko ety 22
=0 k=j o
> ()

:Zf .'(Z)(w—z)]
=0 7

for all x € (z — d, 2 + ). The proof is finished. O

Example 12.5. Let o € R. Recall that (1 4+ x)® is defined by e(+2) for x> —1.

Now for each k € N, put
<a> B a(afl)---l-c-!-(akarl) Zf k 7& 0;
k 1 if x=0.
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Then

whenever |z| < 1.
Consequently, f(x) is analytic on (—1,1).

Proof. Notice that f*)(z) = afa —1)------ (@ —k+1)(1+2)*F for |2] < 1.
Fix |z| < 1. Then by Proposition 12.1, for each positive integer n we have

n—1
IR VA (OIS A A0 net
fz) = ,}0 Y + = 1)!(35 — )" dt
So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that ( )() ( )( )
‘ fn t n—1g, __ fn fn . n—1
/0 (n—l)!(w_t) dt = 7@_1)!(:0 &)
Now write &, = f — w _ ¢ \n—1
n = Npa for some 0 < n, <1 and R,(x) := (=1 (z —&,)" "x. Then
Ro(w) = (a—n+1) (n . 1) (L) (@ —ma2)" 2 = (a—n-+1) (nf 1)xn<1+nnx>a—1<mw—1.

We need to show that R, (z) — 0 as n — oo, that is the Taylor series of f centered at 0 converges to

o0
f. By the Ratio Test, it is easy to see that the series Z(a —k+1) (2) y* is convergent as |y| < 1.
k=0
This tells us that lim [(« — n + 1) (a) 2" =0.
n n
On the other hand, note that we always have 0 < 1 -7, < 1+4mn,x for all n because x > —1. Thus, we

can now conclude that R, (x) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 12.4 at once. The proof is complete. O
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